Sheng Cl	heng
----------	------

Temp	e, AZ, scheng 53@asu.edu, (217) 550-2145, $\rm https:/_{\it A}$	/shengcheng.git	hub.io/	
EDUCATION	Doctor of Philosophy, Computer Science Arizona State University	Advisors:	Yezhou Yang, Yi Ren 2019 - Current	
	Master of Engineering, Electrical and Computer University of Illinois Urbana-Champaign Bachelor of Science Optical and Electronics	Engineering	2016 - 2018	
	Huazhong University of Science and Techn	ology	2012 - 2016	
RESEARCH INTEREST	Visual reasoning and understanding; Vision & Lanugage; Generative AI; Self-supervised learning; Robust and interpretable representation learning; AI in science.			
COMPUTER SKILLS	Java, Python, R, Matlab, Tensorflow, Pytorch			
PROFESSIONAL	Amazon Alexa		May - Aug 2023	
EXPERIENCE	Applied research intern			
	Zero-shot mask annotation free open-vocabulary	semantic segn	nentation by the text-	
	to-image model.		M A 2022	
	Offruer II.al Software Engineer		May - Aug 2022	
	Developing a real-time system evaluating and sco	ring the humar	exercises by cameras.	
	Hikvision Research	8	Feb - May 2019	
	Research Intern			
	Research on a new metric for super-resolution ba	ised on one-to-i	many mapping nature.	
PUBLICATIONS & PREPRINTS	• "Revising Text-to-Image Prior for Improved Text Conditioned Image Genera- tions." Maitreya Patel, Changhoon Kim, Sheng Cheng, Chitta Baral, Yezhou Yang, arXiv:2312.04655, NeurIPS Diffusion workshop.			
	• "Adversarial Bayesian Augmentation for Single-Source Domain Generalization." Sheng Cheng, Tejas Gokhale, Yezhou Yang, ICCV 2023.			
	• "WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text- to-Image Diffusion Models." Changhoon Kim, Kyle Min, Maitreya Patel, Sheng Cheng, Yezhou Yang, arXiv:2306.04744, NeurIPS Diffusion workshop.			
	• "Self-supervised Learning to Discover Physical Objects and Predict Their In- teractions from Raw Videos." Sheng Cheng, Yezhou Yang, Yang Jiao, Yi Re. Neurips AI4Science workshop. Submitted to journal.			
	• "SSR-GNNs: Stroke-based Sketch Representation with Graph Neural Networks." Sheng Cheng, Yi Ren, Yezhou Yang, CVPR Workshop 2022.			
	• "Data-Driven Learning of Three-Point Cor Representations." Sheng Cheng, Yang Jiao,	Correlation Functions as Microstructure Jiao, Yi Ren, Acta Materialia 2022		
	• "Evaluating the Robustness of Bayesian Neu of Attacks." Yutian Pang, Sheng Cheng, Workshop 2021	esian Neural Networks Against Different Types Cheng, Jueming Hu, Yongming Liu, CVPR		
	• "A New Super-Resolution Measurement of F Cheng, Zhe Hu, Ruoyu Sun, arXiv:2303.062	Perceptual Qual 207.	ity and Fidelity" Sheng	
Awards &	• 2023-24 ASU Graduate College Travel Awa	urd		
Services	• 2022, 2023 CVPR workshop Reviewer: 2024	4 CVPR Revie	wer	
	,			

RESEARCH PROJECT

Zero-shot image segmentation by Text-to-Image model without mask annotation

- Leverages CLIP model to filter the existing classes in the image
- Extracts the heatmap of attention layers per classes label from T2I model
- Aligns the heatmap and segmentation maps extracted from unsupervised segmentation method

Self-supervised object discovery and dynamics prediction from videos

- Proposes effective learning architecture, loss, and algorithm for solving the challenge posed by the joint learning the segmentation and dynamics.
- Empirically shows that the correct dynamical model is necessary for correct object segmentation and our proposed trainable dynamical model can improve the accuracy of object discovery.
- Shows that our framework achieves state of art object segmentation and dynamical prediction as well as strong generalization and scalability.

Adversarial Bayesian Augmentation for single source domain generalization

- Proposes a adversarial Bayesian convolutional neural network for data augmentation, and improves the accuracy on single source domain generalization
- Empirically shows that the proposed model outperforms all existing state-of-art data augmentation method on three domain generalization tasks: style generalization, superclass generalization, medical image generalization.

Stroke based sketch representation with GNN

- Proposes models which are innately robust to rotations and translations, while maintaining acceptable classification accuracy.
- Shows that the proposed models are robust to parametric and topological attacks without robust training.
- Generates novel sketches distinguishable from the existing set.

A new metric for super-resolution problem

- Analyze the evaluation problem based on the one-to-many mapping nature of SR, and propose a novel distribution-based metric for SR.
- Conduct human subject study. The proposed metric is highly correlated with the human perceptual quality, and better than most existing metrics. The proposed metric has a higher correlation with the fidelity measure compared to the perception based metrics.
- Train SR networks using proposed metric for better perceptual quality.